Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar.

نویسندگان

  • Osceola Whitney
  • Tawni Voyles
  • Erina Hara
  • Qianqian Chen
  • Stephanie A White
  • Timothy F Wright
چکیده

The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here, we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel FoxP1 and FoxP2 expression in songbird and human brain predicts functional interaction.

Humans and songbirds are two of the rare animal groups that modify their innate vocalizations. The identification of FOXP2 as the monogenetic locus of a human speech disorder exhibited by members of the family referred to as KE enables the first examination of whether molecular mechanisms for vocal learning are shared between humans and songbirds. Here, in situ hybridization analyses for FoxP1 ...

متن کامل

FoxP2 expression in avian vocal learners and non-learners.

Most vertebrates communicate acoustically, but few, among them humans, dolphins and whales, bats, and three orders of birds, learn this trait. FOXP2 is the first gene linked to human speech and has been the target of positive selection during recent primate evolution. To test whether the expression pattern of FOXP2 is consistent with a role in learned vocal communication, we cloned zebra finch ...

متن کامل

Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain.

Foxp2 and Foxp1 are recently identified members of the Fox family of winged-helix/forkhead transcription factor genes. A recent study has found that mutations in human FOXP2 produce a severe language disorder. Since Foxp2 appears to be important in language, we wanted to explore the expression of this gene and a homologous gene, Foxp1, in the developing brain. In the present study, we investiga...

متن کامل

Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.

Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and...

متن کامل

Differences in number and distribution of striatal calbindin medium spiny neurons between a vocal-learner (Melopsittacus undulatus) and a non-vocal learner bird (Colinus virginianus)

Striatal projecting neurons, known as medium spiny neurons (MSNs), segregate into two compartments called matrix and striosome in the mammalian striatum. The matrix domain is characterized by the presence of calbindin immunopositive (CB+) MSNs, not observed in the striosome subdivision. The existence of a similar CB+ MSN population has recently been described in two striatal structures in male ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Developmental neurobiology

دوره 75 7  شماره 

صفحات  -

تاریخ انتشار 2015